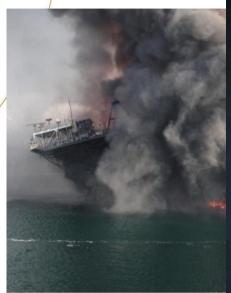
JORNADA ETSIM Madrid, 30 noviembre 2011

La respuesta a la contaminación marina en la normativa europea: Directivas Marco del Agua y de la Estrategia Marina

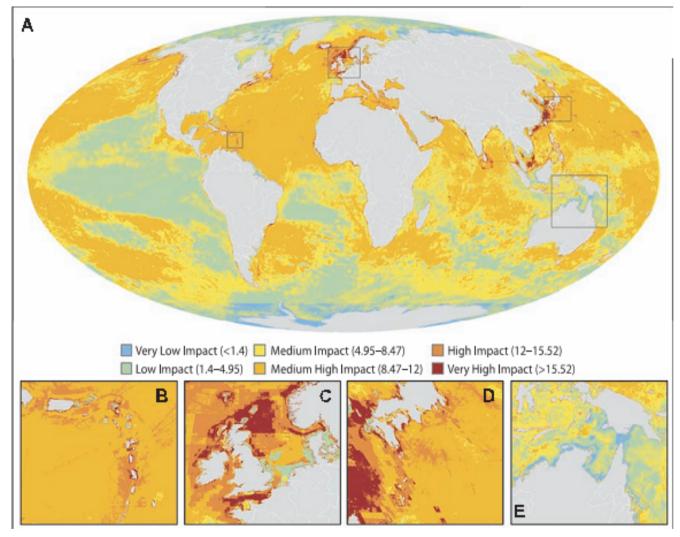
Ángel Borja
Unidad de Investigación Marina
aborja@azti.es



Contenido de la charla

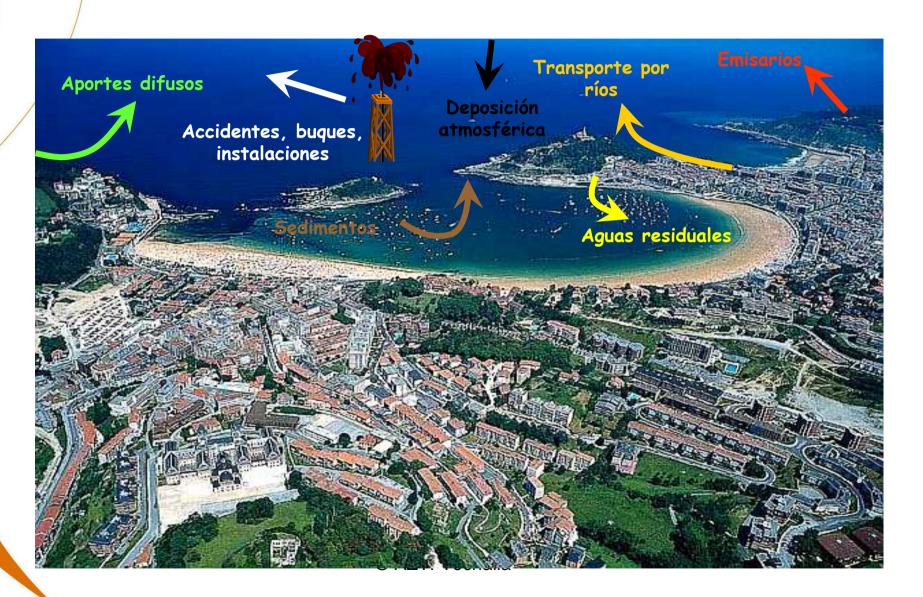
- Presiones en el medio marino
- Contaminación y usos
- Respuestas legales
- Directivas: Marco del Agua (DMA) y de la Estrategia Marina (DEME)
- El estudio del medio marino
 - DMA y bentos
 - DMA e integración
 - DEME y descriptores
 - DEME e integración
- Conclusiones

Presiones en el medio marino

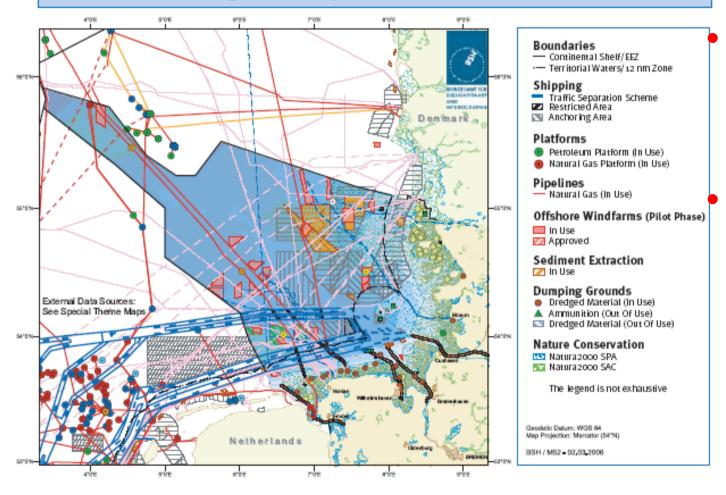


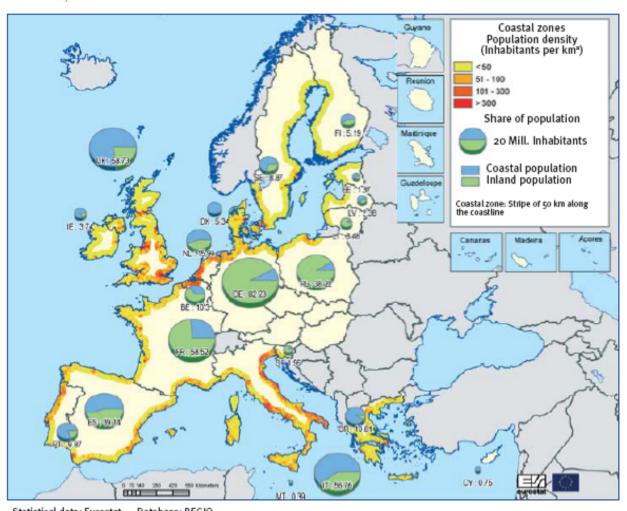
Presiones en el medio marino

Fig. 1. Global map (A) of cumulative human impact across 20 ocean ecosystem types. (Insets) Highly impacted regions in the Eastern Caribbean (B), the North Sea (C), and the Japanese waters (D) and one of the least impacted regions, in northern Australia and the Torres Strait (E).


A Global Map of Human Impact on Marine Ecosystems

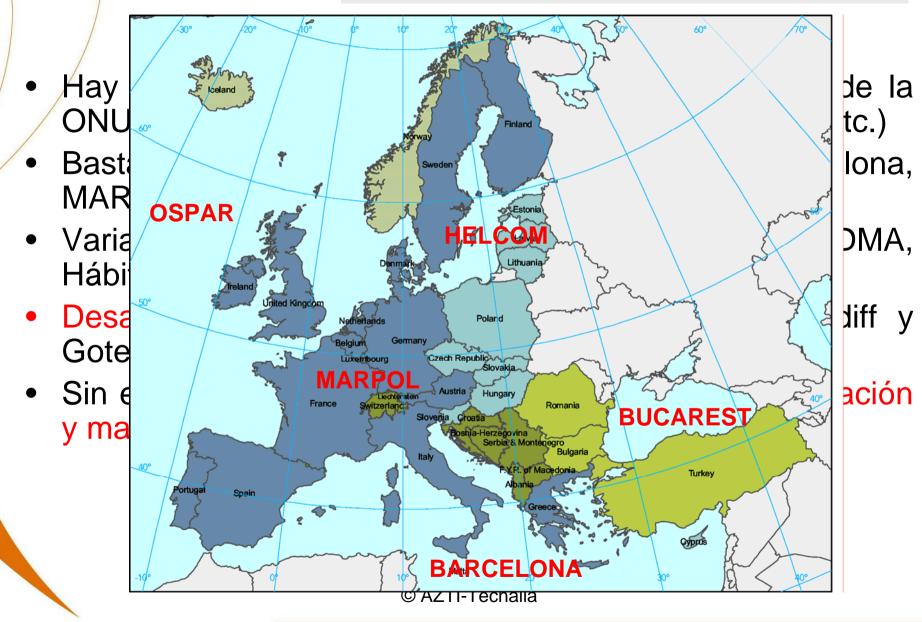
Benjamin S. Halpern, et al. Science **319**, 948 (2008); DOI: 10.1126/science.1149345


- Según GESAMP (Grupo de Expertos en Aspectos Científicos de la Contaminación Marina, una organización mundial dependiente de diversas organizaciones, IMO, FAO, UNESCO, WHO,...):
- Por contaminación marina se entiende "la introducción por el hombre, directa o indirectamente, de substancias o energía en el medio marino, provocando efectos perjudiciales tales como daños a los recursos vivos, riesgos a la salud humana, obstáculos a las actividades marinas, incluyendo la pesca, deterioro de la calidad del agua de mar para su uso y reducción de los atractivos del mar"


North Sea: Existing and Prospective Uses and Nature Conservation

Usos múltiples del medio marino

Interacción de usos


- Un importante porcentaje de la población vive en zonas costeras
- Los ingresos

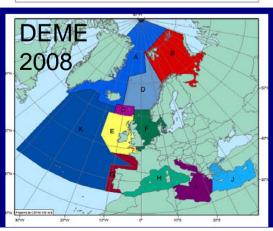
 (PIB) de las
 áreas marinas
 son muy
 importantes

Statistical data: Eurostat — Database: REGIO
© EuroGeographics, for the administrative boundaries
Castography: Eurostat — GISCO

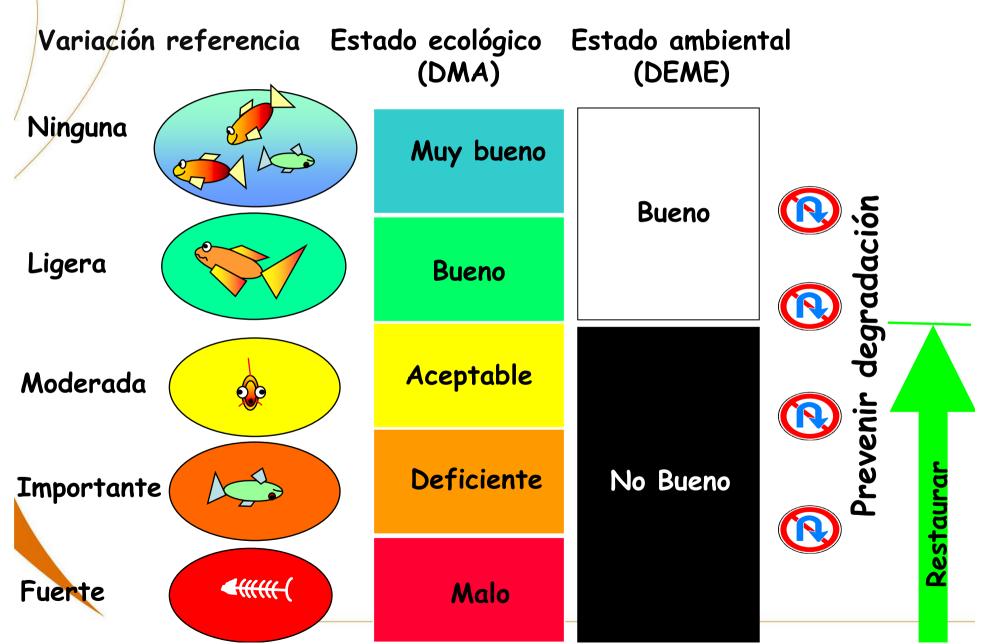
Respuestas legales

National Water Act (1998)


Oceans Policy (1998)


Coastal Management Act (2008)

Respuestas legales


- Una visión global del medio marino, desde un punto de vista ecosistémico, proporcionando herramientas de gestión integrada, que tratan de mantener la funcionalidad de los ecosistemas junto con sus usos
- Prevenir la degradación y proteger y restaurar la calidad de los ecosistemas acuáticos
- Promover el uso sostenible de los mares y conservar los ecosistemas marinos.
- Promover medidas específicas para una progresiva reducción de los vertidos (sustancias prioritarias)
- Alcanzar un Buen Estado para 2015 (DMA)y 2020 (DEME)

Directivas (Aguas y Estrategia Marina)

Directivas (Aguas y Estrategia Marina)

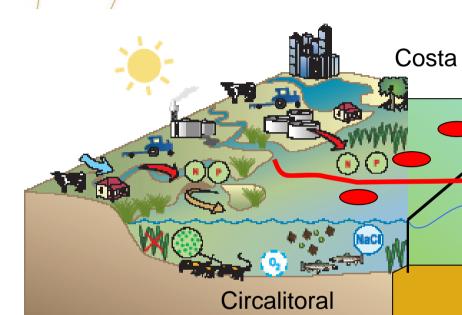
Tema	Directiva Aguas	Directiva de la Estrategia Marina
Elementos y descriptores	Química Físico-química Hidromorfología Fitoplancton Macroalgas: Malo Angiospermas Macroinvertebrados Peces (sólo en aguas transición)	 Biodiversidad Exóticas Peces explotados Redes tróficas Eutrofización Integridad fondos Condiciones hidrográficas Contaminantes Contaminantes en alimentos Basuras Ruido y energía
Diferencias ecológicas	Integración de cada elemento ('uno fuera, todos fuera')	Integridad ecológica (método basado en los ecosistemas o 'ecosystem-based approach')

Ecosystem-based approach: Una gestión integrada de las actividades humanas basada en el mejor conocimiento científico disponible sobre el ecosistema y su dinámica, con objeto de identificar y promover acciones sobre las influencias que son críticas para la salud de los ecosistemas marinos, alcanzando así un uso sostenible de los bienes y servicios de los ecosistemas y el mantenimiento de la integridad de los ecosistemas

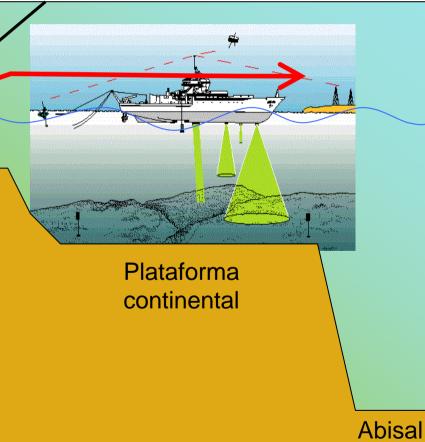
azti tecnalia El estudio del medio marino Contents lists available at ScienceDirect **Ecological Indicators Fuerzas** journal homepage; www.elsevier.com/locate/ecolind motrices The importance of setting targets and reference conditions in assessing marine ecosystem quality Ángel Borja a,*, Daniel M. Dauerb, Antoine Grémarec Gradiente de presión **Presiones** Máxima **Ausencia** Escala de estado línea de base de Areas estado en el **Cambios** prístinas pasado estado Línea de base **Dato histórico** de estado en el Modelización presente Juicio experto Gestión **Impactos** Interpretación **Desarrollo índices** Aplicación/Validación Respuestas sociales

El estudio del medio marino

CONTROL
DE LA CALIDAD
DEL MEDIO
ACUÁTICO



El estudio del medio marino


Límite

Parte de esta figura es cortesía de Suzanne Bricker (USEPA)

Mar abierto

AMBI = $\{(0 \times \%GI) + (1.5 \times \%GII) + (3 \times \%GIII) + (4.5 \times \%GIV) + (6 \times \%GV)\}/100$

http://ambi.azti.es

BIOTIC COEFFICIENT

0 1 2 3 4 5 6

Marine Pollution Bulletin Vol. 40, No. 12, pp. 1100–1114, 2000

© 2000 Elsevier Science Ltd. All rights reserved

Printed in Great Britain

0025-326X/00 S - see front matter

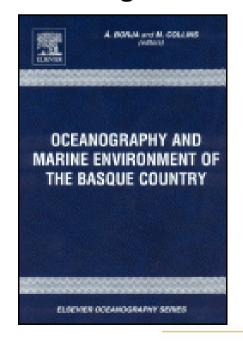
PII: S0025-326X(00)00061-8

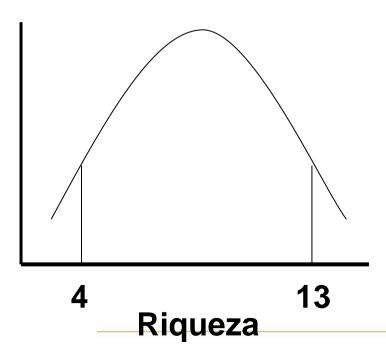
A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments

POLl A. BORJA*, J. FRANCO and V. PÉREZ

WFD

HIGH	GOOD	MODERATE	POOR	BAD
STATUS	STATUS	STATUS	STATUS	STATUS


INCREASING POLLUTION



Condiciones de Referencia

1	Stretches	Type I	Type II	Type III	Type IV
	Oligo/Mesohaline	C. edule-S. plana	C. edule-S. plana	C. edule-S. plana	-
/	Polyhaline	-	V. fasciata/P. arenarius	V. fasciata	-
	Euhaline	-	A. alba/P. arenarius	A. alba	T. tenuis-V. fasciata

Se usa diversidad, riqueza y AMBI en la determinación de la calidad biológica = M-AMBI.

Condiciones de Referencia

Available online at www.sciencedirect.com

Marine Pollution Bulletin 55 (2007) 16-29

www.elsevier.com/locate/marpolbul

Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive

lr Richr

Iñigo Muxika *, Ángel Borja *, Juan Bald

Diversity (bit.ind⁻¹)
AMBI

2.5 2.8 3.8

2

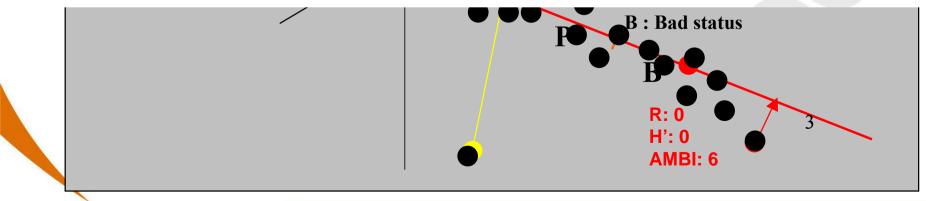
3.5 2.1 4

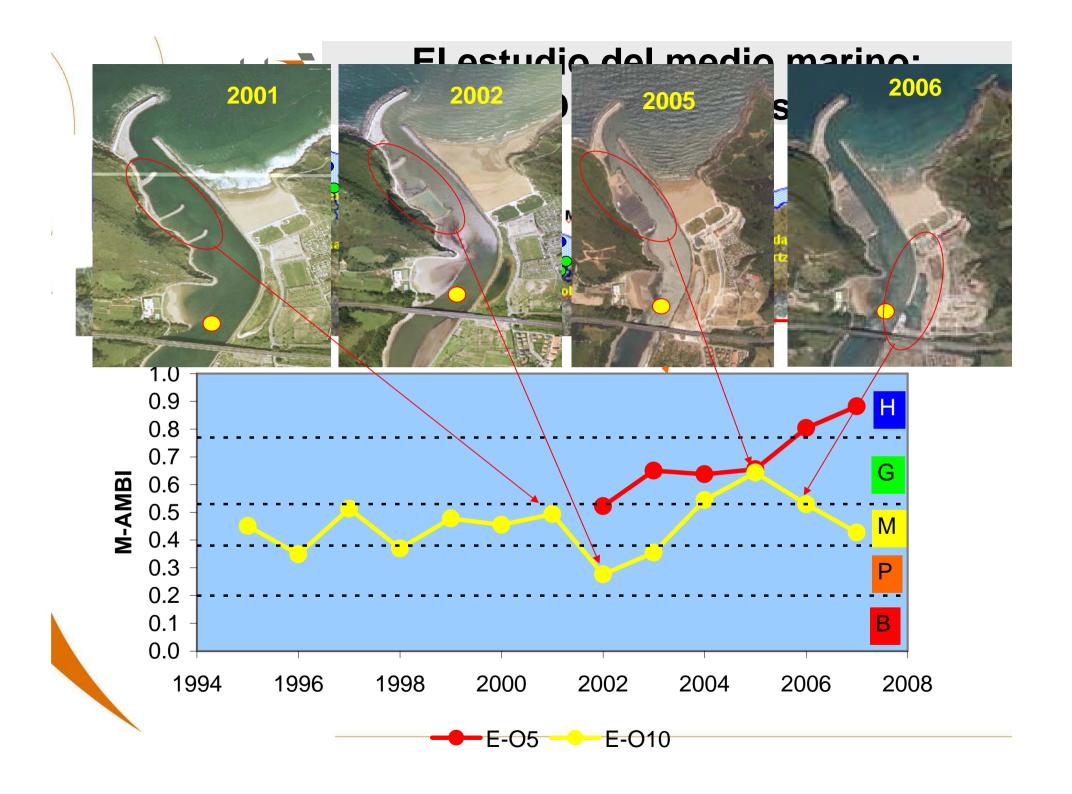
ata

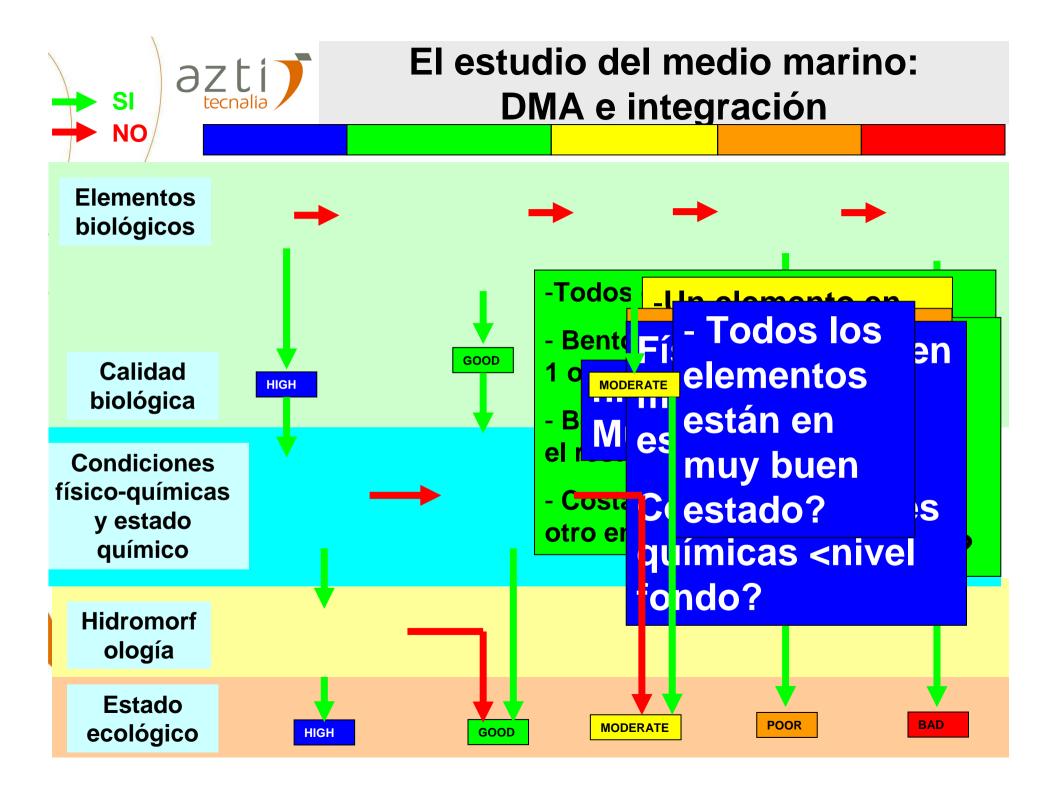
Mal estado: todos 0, excepto AMBI= 6

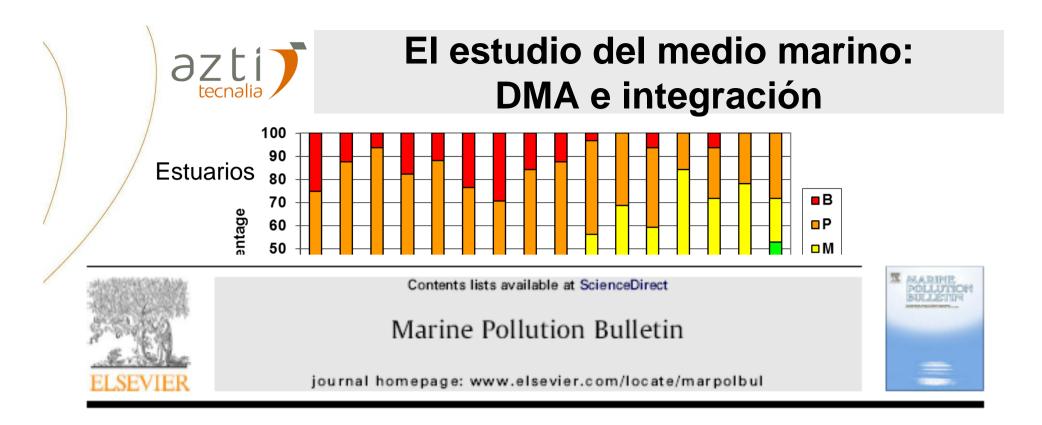
© AZTI-Tecnalia

Factor 2

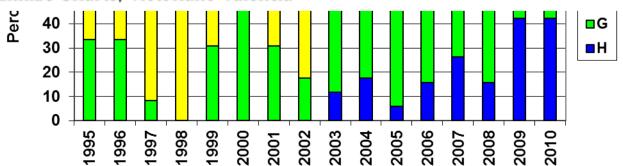

Ecological Quality Ratio (EQR): entre 0 y 1. Dependiendo de los límites entre clases se determina

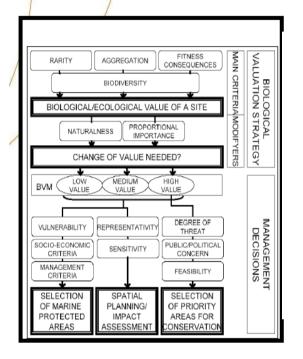

Marine Ecology. ISSN 0173-9565

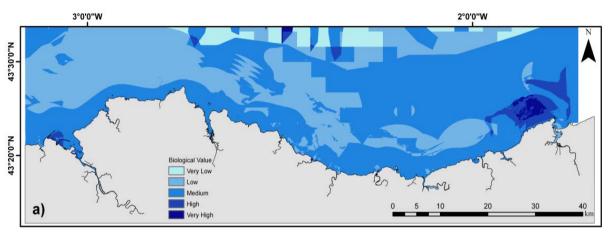

ORIGINAL ARTICLE


Paradigmatic responses of marine benthic communities to different anthropogenic pressures, using M-AMBI, within the European Water Framework Directive

Angel Borja, Iñigo Muxika & J. Germán Rodríguez




Using multiple ecosystem components, in assessing ecological status in Spanish (Basque Country) Atlantic marine waters


Angel Borja*, Juan Bald, Javier Franco, Joana Larreta, Iñigo Muxika, Marta Revilla, J. Germán Rodríguez, Oihana Solaun, Ainhize Uriarte, Victoriano Valencia

Mari Final Biological Valuation Map onent

Contents lists available at SciVerse ScienceDirect

Estuarine, Coastal and Shelf Science

journal homepage: www.elsevier.com/locate/ecss

Marine biological valuation mapping of the Basque continental shelf (Bay of Biscay), within the context of marine spatial planning

Marta Pascual^{a,*}, Angel Borja^{a,*}, Sarah Vanden Eede^b, Klaas Deneudt^c, Magda Vincx^b, Ibon Galparsoro^a, Irati Legorburu^a

Table 5
Indicators used in the assessment of qualitative descriptor 3 (exploited fish), as described in Table 2, for 12 stocks within the southern part of the Bay of Biscay. Key: F; fishing mortality; SSB: spawning stock biomass; MSY: maximum sustainable yield; Fpa: fishing mortality for the precautionary approach. Not not determined: MSE: males and females: HP: high recruitment: LP: low recruitment.

istainable yleid; Fpa; fishi										-			
		Engraulis encrasicolus	Lophius budegassa	Lophius piscatorius	Lepidorhombus boscii	lepidorhombus whiffiagonis	Merluccius merluccius	Sardina pilchardus	Trachurus trachurus	Scomber scombrus	Micromesistius poutassou	Thunnus alalunga	Thunnus thynnus
Fishing mortality (F) (primary indicator) for all species, except for E. encrasicolus, which is Catch/biomass ratio (secondary indicators)	2005 2006 2007 2008 2009 Reference F	0.068 0.065 0.004 - - - - - Undefined	0.554 0.598 0.603 0.352 0.198 Fmsy = 0.44	0.601 0.543 0.442 0.424 0.380 Fmsy = 0.26	0.281 0.331 0.248 0.226 0.272 Fmsy = 0.18	0.214 0.343 0.265 0.206 0.098 Fmsy = 0.17	0.690 0.780 0.810 0.750 0.740 Fmsy = 0.26; Fpa = 0.4	0.194 0.170 0.184 0.267 0.266 Undefined	0.066 0.046 0.050 0.065 0.087 Undefined	0.285 0.234 0.263 0.236 0.233 Fmsy = 0.22; Fpa = 0.23	0.478 0.411 0.436 0.476 0.399 Fmsy = 0.18; Fpa = 0.32	0.159 0.166 0.131 0.129 0.129 Fmsy (2007) = 0.442	0.342 0.297 0.345 0.311 0.208 Fmsy = 0.09 (HR) Fmsy = 0.15 (LR)
	>F		3	5	5	4	5			5	5	0	5
	reference <f reference</f 		2	0	0	1	0			0	0	5	0
Spawning stock biomass (SSB) (primary indicator)	2005 2006 2007 2008 2009 Reference SSB	Bpa = 33000	1492 1779 2066 2296 3157 MSY & Bpa • ND	6523 5707 5164 5436 5707 MSY & Bpa = ND	4316 4896 5020 5326 4716 MSY & Bpa • ND	848 861 756 728 728 MSY & Bpa • ND	11100 12700 15200 16000 20100 MSY & Bpa • ND	369000 586000 566000 420000 316000 MSY & Bpa • ND	2356290 2251270 1955010 2095550 2276680 MSY & Bpa = ND	2290881 2409602 2540759 2709395 2978321 MSY = 2.2 t, Bpa = 2.3 t	621 0258 593 2354 463 1475 325 5375 2097 420 MSY = 2.25 t, Bpa = 2.25 t	169151 173444 188885 200863 200806	36092 39079 39006 34571 33399
	>SSB reference <ssb< td=""><td>t 1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>5</td><td>4</td><td></td><td></td></ssb<>	t 1	-	-	-	-	-	-	-	5	4		
	reference		-	-	-	-	-	-	-	0	1		
Proportion of fish larger than the mean size of first sexual maturation	2005 2006 2007	100% 100% Fishery is dosed	57% 20% 17%	61% 44% 55%	100% 100% 100%	32% 40% 44%	8% 9% 18%		42% 44% 62%	77% 65% 73%	100% - 100%		
(primary indicator)	2008	Fishery is dosed	75%	61%	100%	43%	19%		37%	74%	100%		
	2009	Fishery is dosed	62%	57%	100%	55%	29%		34%	88%	93%		
Size at first sexual maturation (secondary indicator)		9.2 cm (range 4- 12.5 cm)	M&F: 44.7 cm	M&F: 61.84 cm	17 cm	26.6 cm	M&F: 43.68 cm	14.8 cm	23.9 cm	28.6 cm	15 cm	85 cm	97-110 cm

Methods to evaluate the status of phytoplankton in coastal and estuarine water bodies (modified from Borja et al., 2012).

Method Area using Community Abundance Indicators in Overall Eutrophication method composition Chl a thresholds and ranges Sample Other Statistical measure

Table 6

Physico-chemical and phytoplankton variables used to assess the ecological status, within the Water Framework Directive (for methods, see Bald et al., 2005; Revilla et al., 2009), within the offshore waters of the Basque Country. The period studied extends from 2004 to 2009 at L-RF10; and from 2006 to 2009 at L-RF20 and L-RF30 (for locations, see Fig. 1). Notes: NTU: nefelometric turbidity unit.

Physico-chemical variables	L-RF10			L-RF20		L-RF30			
	Average	Std. Dev.	n	Average	Std. Dev.	n	Average	Std. Dev.	n
Salinity	34.93	0.92	24	35.20	0,31	16	35.24	0.26	16
Suspended solids (mg l ⁻¹)	4.70	4.19	24	5.66	3.30	16	5.99	3.66	16
Turbidity (NTU)	0.49	0.46	24	0.43	0.48	16	0.34	0.17	16
Oxygen saturation (%)	102.88	4.48	24	102.63	4.24	16	103.81	6.86	16
Ammonia (µmol l ⁻¹)	3.56	2.79	24	3.30	2.35	16	2.64	1.46	16
Nitrate (µmol l ⁻¹)	3.28	3.68	24	2,23	1.62	16	2.41	1.83	16
Phosphate (µmol l ⁻¹)	0.25	0.14	24	0.23	0.13	16	0.22	0.10	16
Phytoplankton	WFD-metrics	Status	n	WFD-metrics	Status	n	WFD-metrics	Status	n
Chlorophyll a (µg l ⁻¹)	1.2	High	24	1.1	High	16	0.7	High	16
Bloom frequency %	9	High	11	0	High	8	0	High	8
	Average	Minimum-maximum	n	Average	Minimum-maximum	n	Average	Minimum-maximum	n
Diatoms (10 ⁵ cells l ⁻¹)	0.4	0.0-3.4	21	0.8	0.0-3.7	14	0.5	0.0-2.4	13
Dinoflagellates (10 ⁵ cells l ⁻¹)	0.6	0.0-4.8	21	0.4	0.1-1.5	14	0.2	0.1-0.3	13
Others (10 ⁵ cells l ⁻¹)	2.6	0.0-12.4	21	2.3	0.4-5.6	14	2,2	0.6-5.9	13

IFREMER¹ (lagoons) > 30 Red; 10-30 Orange;

7-10 Yellow; 5-7 Green; 0-5 Blue

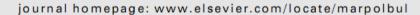
mean annual Chl concentration

frequency and duration

> phytoplankton X abundance of $<2 \mu m, >2 \mu m$

DO, nutrients, algal toxins

Chl a, phytoplankton counts (<2, >2 µm), macrophytes (biomass, diversity), macrobenthos (richness, diversity), water (DO, Chl, Chl/phaeo, turbidity, SRP, TP, TN, NO2, NO3, NH4), sediment (OM, TN, TP)



Marine Pollution Bulletin 60 (2010) 2187-2196

Sea Sea

Contents lists available at ScienceDirect

Marine Pollution Bulletin

Baltic

Viewpoint

The use of benthic indicators in Europe: From the Water Framework Directive to the Marine Strategy Framework Directive

Atlantic

Gert Van Hoey ^{a,*}, Angel Borja ^b, Silvana Birchenough ^c, Lene Buhl-Mortensen ^h, Steven Degraer ^d, Dirk Fleischer ^e, Francis Kerckhof ^d, Paolo Magni ^{f,g}, Iñigo Muxika ^b, Henning Reiss ⁱ, Alexander Schröder ^j, Michael L. Zettler ^k

Ecological Indicators 12 (2012) 174-184

ods used ine waters: ctive

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Mediterra

Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive

Jake Rice a,*, Christos Arvanitidis b, Angel Borja c, Chris Frid d, Jan G. Hiddink e, Jochen Krause f, Black Sea Pascal Lorance g, Stefán Áki Ragnarsson h, Mattias Sköld i, Benedetta Trabucco j, Lisette Enserink k, Alf Norkko l

El estudio del medio marino: DEME e integración

	Ecosystem component	Main pressures	Relation to Qualitative Descriptors
Water & sediment	Nutrient & oxygen levels	Discharges, eutrofication	Eutrophication
chemical quality	Priority substances	Discharges	Pollution
Plankton species	Phytoplankton	Discharges, eutrophication	Eutrophication, biodiversity, alien, hydrography
Trankton species	Zooplankton		Biodiversity, alien, food-webs
			Biodiversity, alien, stocks, food.webs, eutrophication, sea-
Mobile species	Fish	Removal of target species	floor, hydrography, polltion, noise
Widdlic species	Sea mammals	Pollutants, Plastics & Debris	Biodiversity, food-webs, pollution, litter, noise
	Seabirds	Pollutants, Plastics & Debris	Biodiversity, food-webs, pollution, litter, noise
	Benthic species		
	Invertebrates	Discharges, habitat loss	All
	Macroalgae	Discharges, removal of target species	All, except litter
			Biodiversity, alien, eutrophication, sea-floor, hydrography,
	Angiosperms	Discharges, habitat loss	pollution, energy
Seafloor species	Habitats		
	Rock & biogenic reefs	Habitat damage	sea-floor, hydrography
	Coastal sediments (0-50 m)	Habitat loss	sea-floor, hydrography, pollution
		Habitat damage, Removal of target	
	Shelf sediments (50-200 m)	species	sea-floor, hydrography, pollution
	Deep-sea (>200 m)	Habitat damage	sea-floor, hydrography, pollution

Marine Pollution Bulletin 60 (2010) 2175-2186

Contents lists available at ScienceDirect

Marine Pollution Bulletin

journal homepage: www.elsevier.com/locate/marpolbul

Viewpoint

Marine management – Towards an integrated implementation of the European Marine Strategy Framework and the Water Framework Directives

Ángel Borja ^{a,*}, Mike Elliott ^b, Jacob Carstensen ^c, Anna-Stiina Heiskanen ^d, Wouter van de Bund ^e

El estudio del medio marino: DEME e integración

Qualitative Descriptors	Explanation of the indicators used	Reference conditions/EQS	Recent trend	Reliability (%)	Weight (%)	EQR	Final Environment al Status	Final Confidence ratio
1 Biological diversity	integrated biological value		NA	69	15	0.51	0.08	10.35
2 Non-indigenous species	ratio non-indigenous sp.	OSPAR		80	10	0.98	0.10	8
3 Exploited fish and shellfish			▼	100	15	0.48	0.07	15
	fishing mortality <reference< td=""><td></td><td></td><td>100</td><td></td><td>0.18</td><td></td><td></td></reference<>			100		0.18		
	Spawning stock < reference			100		0.67		
	% large fish			100		0.59		
4 Marine food webs			V	70	10	0.40	0.04	7
5 Human-induced eutrophication		WFD	▼	94	10	0.96	0.10	9.4
	Nutrients in good status			100		0.80		
	Chlorophyll in high status Optical properties in high			100		1.00		
	status Bloom frequency in high			100		1.00		
	status			70		1.00		
	Oxygen in high status			100		1.00		
6 Seafloor integrity		WFD	>	100	10	0.89	0.09	10
	Area not affected			100		0.87		
	% presence sensitive sp.			100		0.98		
	Mean M-AMBI value			100		0.83		
7 Alteration of hydrographical conditions			>	100	2	1.00	0.02	2
8 Concentrations of contaminants	High % of samples <eqs Values are 30% of the most</eqs 	WFD	V	100	9	0.80	0.07	9
9 Contaminants in fish and other seafood	affected in the NEA Values are 50% of the most	WFD	▼	30	9	0.60	0.05	2.7
10 Marine litter	affected in Europe	OSPAR		30	5	0.57	0.03	1.5
11 Energy & underwater noise	Moderate ship activity	OSPAR	NA	10	5	0.70	0.04	0.5
Final assessment					100		0.68 Good	75.5 High

Conclusiones

- Las crecientes presiones humanas e impactos en el medio marino requiren desarrollar acciones para reducirlas
- Se necesita una información científica adecuada y unos métodos de evaluación para determinar las respuestas bióticas a dichas presiones
- Los programas de monitoreo deben diseñarse de manera adecuada para obtener esta información
- Tenemos ya herramientas para evaluar el estado en la DMA y los convenios internacionales
- Estos procesos de evaluación deben ser lo más científicos, simples y pragmáticos posible
- Se debe usar un importante apoyo científico, en el proceso de evaluar el estado, para tener una mejor gestión de los ecosistemas marinos

